
Uni.lu HPC School 2019
PS4b: Monitoring & Profiling II:

Advanced Performance engineering

Uni.lu High Performance Computing (HPC) Team

V. Plugaru, X. Besseron

University of Luxembourg (UL), Luxembourg
http://hpc.uni.lu

1 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Latest versions available on Github:

UL HPC tutorials: https://github.com/ULHPC/tutorials

UL HPC School: http://hpc.uni.lu/hpc-school/

PS4b tutorial sources: ulhpc-tutorials.rtfd.io/en/latest/debugging/advanced/

2 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Summary

1 Introduction

2 Debugging and profiling tools

3 Conclusion

3 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Foreword

So we have some news...

4 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Foreword

4 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Foreword

4 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Foreword

4 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Foreword

4 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Foreword

4 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Foreword

4 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Foreword

4 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Foreword

4 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Foreword

4 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Foreword

4 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Foreword

4 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

MeluXina National Supercomputer

MeluXina - coming in 2020

10 PetaFlop supercomputer
Modular architecture covering a wide variety of needs
High performance network & storage for HPC, BigData & AI

5 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

MeluXina National Supercomputer

MeluXina - coming in 2020

10 PetaFlop supercomputer
Modular architecture covering a wide variety of needs
High performance network & storage for HPC, BigData & AI

What this means for you

Algorithms and applications must be run at scale
Code development will play a large role
Need to use different computing elements and memory hierarchy

→֒ will play a critical role in your application performance

5 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Main Objectives of this Session

Theorize
Model
Develop

Compute
Simulate
Experiment

Analyze

This session is meant to show you some of the various tools
you have at your disposal on the UL HPC platform to:

understand and solve development & runtime problems
understand and improve application performance

6 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Main Objectives of this Session

Theorize
Model
Develop

Compute
Simulate
Experiment

Analyze

This session is meant to show you some of the various tools
you have at your disposal on the UL HPC platform to:

understand and solve development & runtime problems
understand and improve application performance

During the session we will (also):
discuss what happens when an application runs out of
memory and how to discover how much memory it
actually requires.

see debugging tools that help you understand why your
code is crashing.

see profiling tools that show the bottlenecks of your
code - and how to improve it.

6 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Introduction

Main Objectives of this Session

Theorize
Model
Develop

Compute
Simulate
Experiment

Analyze

This session is meant to show you some of the various tools
you have at your disposal on the UL HPC platform to:

understand and solve development & runtime problems
understand and improve application performance

During the session we will (also):
discuss what happens when an application runs out of
memory and how to discover how much memory it
actually requires.

see debugging tools that help you understand why your
code is crashing.

see profiling tools that show the bottlenecks of your
code - and how to improve it.

Knowing what to do when you experience a problem
is half the battle.

6 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Summary

1 Introduction

2 Debugging and profiling tools

3 Conclusion

7 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Tools at your disposal (I)

Common tools used to understand problems

Common tools at a glance:
→֒ htop: process/thread live CPU & memory utilization, affinity
→֒ strace: understand what system calls a process is making &

where it gets ‘stuck’
→֒ gdb: general purpose debugger
→֒ valgrind: memory debugging and profiling

SLURM scheduler built-in tools and utilities:
→֒ sstat: running job and jobstep statistics
→֒ sacct: historic job and jobstep statistics
→֒ seff: postmortem CPU/memory utilization and efficiency

Some times simple tools help you solve big issues.

8 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Tools at your disposal (II)

HPC specific tools - Arm (prev. Allinea)

Arm DDT (part of Arm Forge)
→֒ Visual debugger for C, C++, Fortran & Python // code

Arm MAP (part of Arm Forge)
→֒ Visual profiler for C, C++, Fortran & Python

Arm Performance Reports
→֒ Application characterization tool

9 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Tools at your disposal (II)

HPC specific tools - Arm (prev. Allinea)

Arm DDT (part of Arm Forge)
→֒ Visual debugger for C, C++, Fortran & Python // code

Arm MAP (part of Arm Forge)
→֒ Visual profiler for C, C++, Fortran & Python

Arm Performance Reports
→֒ Application characterization tool

Arm tools are licensed

license check integrated in SLURM: scontrol show license

ask for licenses at job submission with e.g. srun -L forge:16

2019 software set being prepared, check new tools with
module load swenv/default-env/devel && module avail

9 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Tools at your disposal (III)

HPC specific tools - Intel

Intel Advisor
→֒ Vectorization + threading advisor: check blockers and opport.

Intel Inspector
→֒ Memory and thread debugger: check leaks/corrupt., data races

Intel Trace Analyzer and Collector
→֒ MPI communications profiler and analyzer: evaluate patterns

Intel VTune Amplifier
→֒ Performance profiler: CPU/FPU data, mem. + storage accesses

10 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Tools at your disposal (III)

HPC specific tools - Intel

Intel Advisor
→֒ Vectorization + threading advisor: check blockers and opport.

Intel Inspector
→֒ Memory and thread debugger: check leaks/corrupt., data races

Intel Trace Analyzer and Collector
→֒ MPI communications profiler and analyzer: evaluate patterns

Intel VTune Amplifier
→֒ Performance profiler: CPU/FPU data, mem. + storage accesses

Intel tools are licensed

All come as part of Intel Parallel Studio XE - Cluster edition!

10 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Tools at your disposal (IV)

HPC specific tools - Scalasca & friends

Scalasca
→֒ Study behavior of // apps. & identify optimization opport.

Score-P
→֒ Instrumentation tool for profiling, event tracing, online analysis.

Extra-P
→֒ Automatic performance modeling tool for // apps.

11 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Tools at your disposal (IV)

HPC specific tools - Scalasca & friends

Scalasca
→֒ Study behavior of // apps. & identify optimization opport.

Score-P
→֒ Instrumentation tool for profiling, event tracing, online analysis.

Extra-P
→֒ Automatic performance modeling tool for // apps.

Free and Open Source!
See other awesome tools at http://www.vi-hps.org/tools

11 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Arm DDT - highlights

DDT features

Parallel debugger: threads, OpenMP, MPI support
Controls processes and threads

→֒ step code, stop on var. changes, errors, breakpoints

Deep memory debugging
→֒ find memory leaks, dangling pointers, beyond-bounds access

C++ debugging – including STL
Fortran – including F90/F95/F2008 features
Python – scripts ran under CPython interpreter, mpi4py
See vars/arrays across multiple processes
Integrated editing, building and VCS integration
Offline mode for non-interactive debugging

→֒ record application behavior and state

Full details at Arm HPC Tools: Forge-DDT
12 / 32

V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Arm DDT - on ULHPC

Modules
On Iris: module load tools/ArmForge

Caution! May behave differently between
→֒ Debian+OAR (Gaia, Chaos) and CentOS+SLURM (Iris)

Debugging with DDT

11 Load toolchain, e.g. (for Intel C/C++/Fortran, MPI, MKL):
→֒ module load toolchain/intel

22 Compile your code, e.g. mpiicc $code.c -o $app

33 Run your code through DDT (GUI version)
→֒ iris: ddt srun ./$app

→֒ gaia/chaos: ddt mpirun -hostfile $OAR_NODEFILE ./$app

44 Run DDT in batch mode (no GUI, just report):
→֒ ddt --offline -o report.html --mem-debug=thorough

./$app

13 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Arm DDT - interface

14 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Arm MAP - highlights

MAP features

Meant to show developers where&why code is losing perf.
Parallel profiler, especially made for MPI applications
Recent Python support, incl. mpi4py, OpenMP, threading
Effortless profiling

→֒ no code modifications needed, may not even need to recompile

Clear view of bottlenecks
→֒ in I/O, compute, thread or multi-process activity

Deep insight in CPU instructions affecting perf.
→֒ vectorization and memory bandwidth

Memory usage over time – see changes in memory footprint
Integrated editing and building as for DDT

Full details at Arm HPC Tools: Forge-MAP

15 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Arm MAP - on ULHPC

Modules
On Iris: module load tools/ArmForge

Caution! May behave differently between:
→֒ Debian+OAR (Gaia, Chaos) and CentOS+SLURM (Iris)

Profiling with MAP

11 Load toolchain that built your app., e.g.
→֒ module load toolchain/intel

22 Run your code through MAP (attached, GUI version)
→֒ iris: map srun ./$app

→֒ gaia/chaos: map mpirun -hostfile $OAR_NODEFILE ./$app

33 Run MAP in batch mode (no GUI, create .map file):
→֒ iris: map --profile srun ./$app

16 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Arm MAP - interface

17 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Arm Perf. Reports - highlights

Performance Reports features

Meant to answer How well do your apps. exploit your hw.?
Easy to use, on unmodified applications

→֒ outputs HTML, text, CSV, JSON reports

One-glance view if application is:
→֒ well-optimized for the underlying hardware
→֒ running optimally at the given scale
→֒ affected by I/O, networking or threading bottlenecks

Easy to integrate with continuous testing
→֒ programatically improve performance by continuous profiling

Energy metric integrated
→֒ using RAPL (CPU) for now on iris
→֒ IPMI-based monitoring may be added later

Full details at Arm HPC Tools: Perf. Reports

18 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Arm Perf. Reports - on ULHPC

Modules
On Iris: module load tools/ArmReports

Caution! May behave differently between:
→֒ Debian+OAR (Gaia, Chaos) and CentOS+SLURM (Iris)
→֒ Gaia: can collect GPU metrics
→֒ Iris: can collect GPU & energy metrics

Using Performance Reports

11 Load toolchain that you run your app. with, e.g.
→֒ module load toolchain/intel

22 Run your application through Perf. Reports
→֒ iris: perf-report srun ./$app

→֒ gaia/chaos: perf-report mpirun -hostfile $OAR_NODEFILE

./$app

33 Analysis by default in .html and .txt indicating also run config.

19 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Arm Perf. Reports - output (I)

20 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Arm Perf. Reports - output (II)

21 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Intel Advisor - highlights

Advisor features

Vectorization Optimization and Thread Prototyping
Analyze vectorization opportunities

→֒ for code compiled either with Intel and GNU compilers
→֒ SIMD, AVX* (incl. AVX-512) instructions

Multiple data collection possibilities
→֒ loop iteration statistics
→֒ data dependencies
→֒ memory access patterns

Suitability report - predict max. speed-up
→֒ based on app. modeling

Full details at software.intel.com/en-us/intel-advisor-xe

22 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Intel Advisor - on ULHPC

Modules

On iris/gaia/chaos: module load perf/Advisor

Using Intel Advisor

11 Load toolchain: module load toolchain/intel

22 Compile your code, e.g. mpiicc $code.c -o $app

33 Collect data e.g. on gaia:

mpirun -n 1 -gtool "advixe-cl -collect survey \

-project-dir ./advisortest:0" ./$app

44 Visualise results with advixe-gui $HOME/advisortest

23 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Intel Advisor - interface

24 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Scalasca & friends - highlights

Scalasca features

Scalable performance analysis toolset
→֒ for large scale // applications on 100.000s of cores

Support for C/C++/Fortran code with MPI, OpenMP, hybrid
3 stage workflow: instrument, measure, analyze

→֒ at compile time, run time and resp. postmortem

Score-P for instrumentation + measurement, Cube for vis.
→֒ Score-P can also be used with Periscope, Vampir and Tau

Facilities for measurement optimization to min. overhead
→֒ by selective recording, runtime filtering

Full details at http://www.scalasca.org/about/about.html

25 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Scalasca - on ULHPC

Modules

On iris/gaia/chaos:

module load perf/Scalasca perf/Score-P

Using Scalasca

11 Load toolchain: module load toolchain/foss

22 Compile your code, e.g. scorep mpicc $code.c -o $app

33 Collect data e.g. on gaia: scan -s mpirun -n 12 ./$app

44 Visualise results with square scorep_$app_12_sum

→֒ or generate text report: square -s scorep_$app_12_sum

→֒ . . . and print it: cat scorep_$app_12_sum/scorep.score

26 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Debugging and profiling tools

Scalasca visualisation with Cube-P

27 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Conclusion

Summary

1 Introduction

2 Debugging and profiling tools

3 Conclusion

28 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Conclusion

Now it’s up to you

Easy right?

29 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Conclusion

Now it’s up to you

Easy right?

Well not exactly.

29 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Conclusion

Now it’s up to you

Easy right?

Well not exactly.
Debugging always takes effort and real applications are

never trivial.

29 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Conclusion

Now it’s up to you

Easy right?

Well not exactly.
Debugging always takes effort and real applications are

never trivial.

But we do guarantee it’ll be /easier/ with these tools.

29 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Conclusion

Conclusion and Practical Session start

We’ve discussed

A couple of small utilities that can be of big help
HPC oriented tools available for you on UL HPC

And now..

Short DEMO time!

30 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Conclusion

Conclusion and Practical Session start

We’ve discussed

A couple of small utilities that can be of big help
HPC oriented tools available for you on UL HPC

And now..

Short DEMO time!

Your Turn!

30 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Conclusion

Hands-on start

We will first start with running HPCG (unmodified) as per:

ulhpc-tutorials.rtfd.io/en/latest/advanced/HPCG/

. . . your tasks:

11 perform a timed first run using unmodified HPCG v3.0 (MPI only)
X use sacct -j $JOBID -l to get details
X single node, use ≥ 80 80 80 for input params (hpcg.dat)

22 run HPCG (timed) through Allinea Perf. Report
X use perf-report for diff. // configurations: 1 vs 2 nodes all cores

33 instrument and measure HPCG execution with Scalasca
X check MPI comm. measurements, especially collective operations

Reservations for the workshop on Iris:

→֒ regular nodes (batch partition): --reservation=hpcschool

→֒ accel. nodes (gpu partition): --reservation=hpcschool-gpu

31 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

Thank you for your attention...

Questions? http://hpc.uni.lu

High Performance Computing @ uni.lu

Prof. Pascal Bouvry
Dr. Sebastien Varrette
Valentin Plugaru
Sarah Peter
Hyacinthe Cartiaux
Clement Parisot
Dr. Fréderic Pinel
Dr. Emmanuel Kieffer

University of Luxembourg, Belval Campus
Maison du Nombre, 4th floor
2, avenue de l’Université
L-4365 Esch-sur-Alzette
mail: hpc@uni.lu

1 Introduction

2 Debugging and profiling tools

3 Conclusion

32 / 32
V. Plugaru, X. Besseron & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS4b

N

	Introduction
	Debugging and profiling tools
	Conclusion

