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Abstract

This short introduction to BLAS covers the basic functionality of the library and efficiency
considerations that are common in all numerical libraries. Practical aspects of compiling and
linking with BLAS libraries are also covered.
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1 Introduction
Computers are designed to perform numerical computations quickly. Numerical libraries are
a method of organizing the algorithms (instructions) that perform the numerical computations
in a manner that allows the user to easily find and use the algorithm they require. At the same
time, the numerical libraries hide any implementation complexity from the end user.

However, the end user must still be aware of the implementation details of numerical li-
braries in order to extract the optimal performance. The architecture of modern computers
and use of caches in particular, means that mathematically equivalent evaluations in terms of
the number of mathematical operations will have different performance. Even though the cor-
responding algorithms are equivalent in asymptotic performance, the difference in speed and
energy consumption is significant for larger problems.

Take for instance a simple matrix-vector multiplication:(
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3 4

)
·
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)
. (1)

Even this simple computation can be performed in 2 different manners, either using dot-product
operations and concatenation:
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or by scalar-matrix products and matrix addition:(
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)
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+ 2
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4
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. (3)

Even though these two approaches involve the same number of instructions, the limitations
imposed by computer architecture imply that one approach, the one based on scalar-matrix
products, is faster for large enough problems!

In this short introduction to numerical libraries we will present BLAS, a library for performing
basic linear algebra operations. Among the topics this introduction covers are

• what are numerical libraries and how to use them,

• what kind of functions are implemented in BLAS and their interface, and

• how computer architecture, and more specifically caching, affects the performance of BLAS
in different layouts out data.

2 Data representation for vectors and matrices
Understanding how vectors and vectors are represented in computers helps a lot in under-
standing the interface of BLAS. To understand the representation of vectors and matrices, it is
important to understand the limitations of computer memory and how the effect the type of
operations performed on these mathematical objects. Let’s start with vectors, the simpler of the
2 objects.
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2.1 A simple data structure for storing vectors
In general, vectors in computers are stored in arrays. Consider a data structure holding a vector
in a language like C. A first approach in the design of such a data structure is given in algorithm 1.
The structure hold a pointer to a memory location holding the data of some numerical type T,
and the number of elements held in the vector.

Algorithm 1 A simple designing for a data structure holding vectors.
structure vector(T)

data : T∗
n : integer

end structure

Consider for instance the function scaling the vector by a scalar in algorithm 2. To scale a
vector v by a scalar 𝛼, that is perform the operation

𝑥 ← 𝛼 · 𝑥, (4)

the call to function scale is
scale(v.n, 𝛼, v.data), (5)

so the data structure for v contains all the data for calling scale. However, such a representation
has some limitations.

Algorithm 2 Simple function scaling a vector 𝑥 by scalar 𝛼.
function scale(N, alpha, x)

for i = 0 : N-1 do
x[i]← alpha · x[i]

end for
end function

2.2 A data structure for vectors contained in data structures for matrices
The limitations of the simple vector representation in algorithm 1 appear when we consider how
vector scaling is used in the context of problems involving constructs such as matrices. BLAS
operates on dense matrices which, like vectors, are represented in the memory by arrays. Arrays
are 1-dimensional objects in the memory, unlike mathematical arrays that are 2-dimensional
objects. This means that a matrix must be serialized either across its rows or its columns to be
stored in an array.

As an example, the 3 × 2 matrix in fig. 1 is serialized across its columns. The thick lines in
the array denote the limits of the array columns, and do not have any physical meaning in the
computer memory.

1 3 5
2 4 6

( )
1 2 3 4 5 6

Figure 1: Example representation of a R3×2 matrix in an array of doubles in the memory.
Delimiters in the array representation denote the row boundaries, without having any physical
meaning.

2.2.1 A simple data structure for matrices

A simple design for a structure storing a matrix is presented in algorithm 3. Simply storing the
entries of a matrix in an array removes all shape information, so two extra integers, one for the

2



number of rows (m) and one for the number of columns (n) are also stored. The number 𝑁 of
element of type T allocated for the array data is

𝑁 = m · n (6)

so 𝑁 is not stored explicitly.

Algorithm 3 A simple design for a data structure storing matrices.
structure matrix(T)

data : T∗
m : integer
n : integer

end structure

The matrix can be split in the conventional manner in row and column vectors. Given a
matrix 𝐴 ∈ R𝑚×𝑛 , we use the notation

• 𝐴[𝑖 , 𝑗] to denote the element in position (𝑖 , 𝑗), and

• 𝐴[𝑖0 : 𝑖1 , 𝑗0 : 𝑗1] to denote a section of 𝐴 between the row 𝑖0 and 𝑖1 and the columns 𝑗0 and
𝑗1.

In case there is a single element in a range, for instance 𝐴[𝑖0 : 𝑖1 , 𝑗 : 𝑗], we simplify the notation
to 𝐴[𝑖0 : 𝑖1 , 𝑗].

2.2.2 A vector data structure for accessing matrix row vectors

Consider some problem where we would like to scale in place a row vector of some matrix.
This is a fairly typical operation that appears in problems such as Gaussian elimination. In the
example of fig. 1 we can observe that the row vectors are not stored in a consecutive manner.
The algorithm 2 however works only on sequential vectors. We fix this problem in algorithm 4,
by adding an extra parameter that describes the step between vector elements.

Algorithm 4 Function scaling a vector 𝑥 by scalar 𝛼 that supports vectors stored with periodic
increments.

function scale(N, alpha, x, incx)
for i = 0 : N-1 do

x[i · incx]← alpha · x[i · incx]
end for

end function

The scaling function in algorithm 4 can now scale the 𝑘th row of a matrix 𝐴 with a call

scale(𝑁 = A.n, alpha = 𝛼, x = A.data + 𝑘, 𝑖𝑛𝑐𝑥 = A.m). (7)

Of course, we could have copied the data in a consecutive range in memory, use the simple
scale function in algorithm 2 and copy the result back in the array. The advantage of the
implementation supporting the increment parameter is that it performs the operation in place,
eliminating the need for data copying.

Our scaling function now supports vectors with periodic increments that are different than
one, however, the vector data structure in algorithm 1 can not hold the information to describe
vectors with periodic increments. To rectify this disparity, we extend the vector data structure
by adding an increment parameter in algorithm 5. Then, the vector v for the 𝑘th row of a matrix
𝐴 ∈ R𝑚×𝑛 is

𝐴[𝑘, 1 : 𝑛] ≡ v← vector(data = A.data + 𝑘, n = A.n, incx = A.m), (8)
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and the call to scale the vector by 𝛼 is

scale(N = v.n, alpha = 𝛼, x = v.data, incx = v.incr). (9)

Thus, the new vector representation in algorithm 5 contains all the information to call the
function scaling vector with a periodic increment between entries different than 1.

Algorithm 5 A data structure holding vectors with periodic increments.
structure vector(T)

data : T∗
n : integer
incr : integer

end structure

2.3 A matrix data structure allowing access to sub-matrices
We now have a data structure that allows access to vectors in a more complex context. Is there the
need to access matrix elements in contexts more complex than the data structure in algorithm 3
can support? Consider for instance again the Gaussian elimination operating (row wise) on the
matrix

𝐴 =
©«
1 1 1
1 2 2
1 2 3

ª®®¬ . (10)

Denoting the state of the matrix before and after the 1st elimination step by 𝐴(0) and 𝐴(1)

respectively, the result of a single step of the algorithms is

𝐴(0) =
©«

1 1 1
1 2 2
1 2 3

ª®®¬ ∼ 𝐴(1) =
©«

1 1 1
0 1 1
0 1 2

ª®®¬ (11)

where the demarcated lower-right area is the area on which the next step of the algorithm will
operate. In a recursive implementation of the Gaussian elimination, will ideally operate in place.
However, looking into the column-wise linearization of the arrays,

𝐴(0) ≡
(

1 1 1 1 2 2 1 2 3
)

(12)

and
𝐴(1) ≡

(
1 0 0 1 1 1 1 1 2

)
, (13)

the columns of 𝐴(1) are no longer stored in a consecutive manner.
The situation is similar to the increment parameter in the vector data structure, and it is

rectified by the introduction of a parameter to capture the constant spacing between initial
entries of consecutive columns. The parameter is called the leading dimension of the matrix (ld)
because in many computations replaces the column length. The new data structure can be seen
in algorithm 6. Assume that a data structure of the new matrix type M0 stores the data for 𝐴(0),
then the data structure M1 for 𝐴(1) is derived by

M1 ← matrix(data = data.M + 1 · ld + 1, ld = 3,m = 2, n = 2). (14)
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Algorithm 6 A data structure storing matrices with periodic spacing between column initial
entries.

structure matrix(T)
data : T∗
ld : integer
m : integer
n : integer

end structure

2.4 Design choices in vector and matrix data structures
The data structure of algorithm 5 follows the BLAS interface very well, however, it has its own
limitations. In particular, the size information for the data array is lost, and the address to which
the data entry points is no longer considered as the initial address in the memory allocated for
the vector data. Thus the vector data structure in algorithm 5 can longer be used to manage the
memory allocation for the vector.

The problem is that in software engineering terms a vector data structures must perform 2
operations,

• manage the memory allocation for the vector, and

• provide a flexible method to access the data in the memory allocated by the vector.

Thus, it makes sense to split that data structures and have different structures perform each
function.1 The interface of BLAS remains quite flat, so all arguments are provided to BLAS
functions using raw function arguments instead of data structure fields. It often helps though
to think of vectors in terms of a data structure that provides flexible access, as the memory will
often be managed externally. For instance, when scaling the rows of a matrix in ??, the memory
allocation for the vector is managed by the data structure for the matrix.

3 The BLAS library and its interface
Basic Linear Algebra Subprograms (BLAS) is a specification that prescribes a set of low-level
routines for performing common basic linear algebra operations. An overview of the interface
of BLAS is provided by the quick reference guide in appendix A. The interface presented is for
Fortran programs. Programs written in C can use the FORTRAN interface directly, for simplicity
however, equivalent definitions are available in the CBLAS interface for C programs.

There are multiple implementations of the BLAS interface, each optimized for some set of
target platforms. The Netlib BLAS is the reference implementation that emphasizes code clarity
and basic optimizations that work on all architectures. The definitions of the various functions
are provided in the documentation and are simple enough that to be accessible to all after some
familiarisation with the code base.2 Netlib BLAS also provides C bindings for the FORTRAN
implementation through a library implementing the CBLAS interface.

3.1 Naming conventions and data representation
The names of the functions used by BLAS can be unintuitive, however, the naming scheme is
systematic. The operations of BLAS are grouped in 3 levels, according to their computational
complexity.

Level 1: Functions of BLAS with computational complexity 𝑂(𝑛) (and some with complexity
𝑂(1) as well). These include operations on one or more vectors, such as the vector norm
and the dot product.

1This is the approach used in the ranges library of C++20.
2https://www.netlib.org/blas/#_blas_routines
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Storage type
Algebraic properties Standard (-) Banded (B) Packed (P)

General (G) GE GB
Symmetric (S) SY SB SP
Hermitian (H) HE HB HP
Triangular (T) TR TB TP

Table 1: Indicator of mathematical and storage matrix types

Level 2: Functions of BLAS with computational complexity 𝑂(𝑛2). These include matrix-vector
products.

Level 3: Functions of BLAS with computational complexity 𝑂(𝑛3). These include matrix-matrix
products.

BLAS was designed when versions of FORTRAN with limits in their identifier names were
dominating numerical computing, so the names use characters economically. The first character
of the functions name is a prefix that denotes the data type over which the function operates.
The official BLAS interface as implemented by Netlib supports the following arithmetic types
and numerical precisions:

• single precision real numbers (S) with 32-bits,

• double precision real numbers (D) with 64-bits,

• single precision complex numbers (C) with 64-bits, and

• double precision complex numbers (Z) with 128-bits.

The required algebraic type (real or complex) depends on the problem type. The precision
type depends on the application type, for instance engineering simulations require double
precision calculations, were as machine learning application such as classifiers based on Multi-
layer Perceptrons can work with single or even lower precision. There are proposals to support
lower and mixed precision operations,3 mainly to facilitate machine learning applications.

Following the data type specifier, a letter code specifies the type of the operands and the
operation. Operands can be scalars, vectors, or matrices. Scalars and vectors have one storage
form, however, matrices can be stored in multiple manners. The mathematical properties of
matrices are exploited in the storage types to save on memory accesses and memory use. The
matrix storage types are presented in table 1, and the storage patterns for the standard and
packed typed are depicted in fig. 2. The banded type is similarly simple, but it requires larger
matrices to demonstrate effectively. You can find the definitions of all storage patterns supported
by BLAS in the BLAS forum standard [1].

The final part of the function names, is the operation type. The notation for the operation
types is significantly more varied than the other name components.

• For level 1 operations, there are few specific rules and the names are mostly mnemonic or
phonetic approximations. For instance, xAXPY denotes the operation 𝑥 ← 𝛼𝑥 + 𝑦.

• For most level 2 operations, the sequence MV is used denoting multiplication of matrix (M)
with vector (V).

• For most level 3 operations, the sequence MM is used denoting multiplication of matrix (M)
with matrix (M).

Many operations support optional arguments for each input to use its transpose, or in the
case of complex arguments its conjugate transpose as well. There are also some routines that
allow mixing complex and real numbers. The quick reference guide of BLAS, also included in
appendix A, contains a list the available functions.

3https://icl.utk.edu/bblas/sc17/files/bblas-sc17-riedy.pdf
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𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

©«
ª®®¬GE: 𝑎11 𝑎21 𝑎31 𝑎12 𝑎22 𝑎32 𝑎13 𝑎23 𝑎33

𝑎11 𝑎12 𝑎13
𝑎12 𝑎22 𝑎23
𝑎13 𝑎23 𝑎33

©«
ª®®¬SY: 𝑎11 𝑎21 𝑎31 𝑎12 𝑎22 * 𝑎13 * *

𝑎11 𝑎12 𝑎13

0 𝑎22 𝑎23

0 0 𝑎33

©«
ª®®®¬TR: 𝑎11 𝑎21 𝑎31 𝑎12 𝑎22 * 𝑎13 * *

𝑎11 𝑎12 𝑎13
𝑎12 𝑎22 𝑎23
𝑎13 𝑎23 𝑎33

©«
ª®®¬SP: 𝑎11 𝑎21 𝑎31 𝑎12 𝑎22 𝑎13

𝑎11 𝑎12 𝑎13

0 𝑎22 𝑎23

0 0 𝑎33

©«
ª®®®¬TP: 𝑎11 𝑎21 𝑎31 𝑎12 𝑎22 𝑎13

Figure 2: Demonstration of a few storage types supported by BLAS. In symmetric or triangular
matrices stored in standard form, the lower triangular part is left with undefined content. This
speedup computations as the undefined entries do not have to be stored. In packed formats, the
undefined entries are dropped almost halving the required storage. Note that generic matrices
cannot be stored in packed form.

3.2 Useful extensions of the official BLAS interface
There are some very useful operations that are not part of the official standard, but are im-
plemented in some BLAS libraries like OpenBLAS and MKL. For instance, when evaluating a
product which we know that it will result in a symmetric matrix, the xGEMMT operation multiplies
two matrices, but only updates the upper or lower triangular part of the output. This is a more
frequent operation than one may expect, as it appears in the calculation of energy (quadratic
forms)! Consider for instance, the product

𝐴𝐵𝐴𝑇 (15)

where 𝐵 is symmetric and 𝐴 is a compatible generic matrix. The product

𝐶 = 𝐴𝐵 (16)

is not symmetric in general, but the whole result

𝐶𝐴𝑇 (17)
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is always symmetric! As a result, only the evaluation of the upper or lower triangular part of
the matrix is required almost halving the number of memory accesses required.

3.3 Design choices for the functional interface of BLAS
The BLAS specification describes a systematically designed interface that exposes to the user a
set of pure functions. All the functions operate on basic data types or their arrays, and do not
allocate memory or any other resource. This is a deliberate design choice, as it allows the user
to design their structures in a manner best fitting their problem.

For example, imagine that we are using the data structures in algorithm 5 to store vectors.
Then, to perform the operation

𝑦 ← 𝛼𝑥 + 𝑦 (18)

the vectors x and y are passed to the level 1 function xAXPYwith the call

xAXPY(𝑁, 𝛼, x.data, x.incr, y.data, y.incr) (19)

where we should ensure that
𝑁 = x.n = y.n. (20)

Depending on the type of the vector, we should chose from SAXPY, DAXPY, CAXPY, and ZAXPY.
The user is responsible to ensure that all memory accesses are within bounds in BLAS. For

instance, in relation (19), the calling function should ensure that the relation in relation (20)
holds and that {

x.n · x.incr < size allocated for x.data

y.n · y.incr < size allocated for y.data
(21)

so that xAXPY does not read or write data outside the memory allocated for the vector arguments.
Furthermore, in many BLAS functions the input arrays can be overwritten with the results

for efficiency. Let’s consider a pseudocode definition of xAXPY in algorithm 7. This function
allows us to scale a vector x by a scalar 𝛼 in place, similar to algorithm 4, by calling

xAXPY(𝑁 = x.n, alpha = 𝛼, x = x.data, incx = x.incr, y = x.data, incy = x.incr) (22)

which overwrites the data in x. This is not just an artifact of the specific implementation of
xAXPY, but the official specification for xAXPY. All relevant functions in BLAS can overwrite their
inputs in a similar manner.

Algorithm 7 Pseudocode for xAXPY(N, alpha, x, incx, y, incy).
function xAXPY(N, alpha, x, incx, y, incy)

for i = 0 : N-1 do
y[i*incy]← y[i*incy] + alpha*x[i*incx]

end for
end function

4 The effects of caches in BLAS function performance
In modern hardware, it is often beneficial to access the memory in chunks of fixed size. Vector-
ized SMID instructions allow the unrolling of loops to apply an operations over multiple inputs
at once. Even if the vectorized operation is slower than individual operations, the data are
loaded in the registers in one instruction, instead of multiple small loads, increasing the overall
throughput. An architecture typical of modern cache systems in depicted in fig. 3. Typically
architectures implement instruction to load whole cache lines from the L1 data cache, like the

8



SIMD instruction of AVX-512 that operate on 64 byte vectors4.

Memory L2 L1 CPU
128 Bytes 64 Bytes 1-8∗ Bytes

∗up to 64 for some special SIMD instructions sets such as AVX-512

Figure 3: This figure depicts a typical cache architecture of a modern CPU with some simplifi-
cations. For instance, the L1 cache is almost always split into an instruction and a data cache,
and there is usually a L3 cache as well. However, the basic principles of operation of all caches is
that access to any element within a cache line will cause the fetch of the whole line from further
down the cache hierarchy.

However, due to the specifics of the cache implementation, cache line start at specific memory
addresses. If the data is not stored within the boundaries of the cache lines, the SIMD load
operations cannot be applied and loop unrolling is deactivated. For instance in fig. 4 the green
array is aligned exactly with the cache lines and can be fetched in one SIMD operation. The red
array however, even if it is the same size is not aligned requiring at least two operations!

Vectorizable:

Non-vectorizable:

Figure 4: The green array is aligned exactly with the cache lines and can be fetched in one SIMD
operation. The red array is not aligned and thus requires at least 2 operations.

Due to the performance limitation in accessing the memory, it is thus beneficial to place
the matrix columns (or rows) so that they align with the cache lines. As a result, the leading
dimension of the array is used to pad the columns to align with the cache lines.

5 Software libraries and BLAS
Compilation of source code does not generate executables directly, but object files in Executable
and Linkable Format (ELF). There are multiple methods to compose executables from object files
in ELF format, each method developed to meet specific needs. For instance, dynamic loading
of dynamic libraries allows the implementation of interpreted environments within a single
process.

Most executables are composed using libraries. The compilation of a single source file,
generates an object file in ELF format. Multiple object files and libraries can be linked into new
libraries, or can be linked into executables. There are 2 kinds of libraries, static and dynamic
libraries.

Static libraries: Multiple object files strung together; a table of content can be added to accelerate
4https://www.intel.com/content/www/us/en/developer/articles/technical/data-alignment-to-assist-

vectorization.html
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symbol (functions and variables) lookup. They are using during linking to resolve all
symbols in the generated executable.

Dynamic libraries: Similar to static libraries, but compiled in a way that allows them to be
loaded at runtime, as the need arises. They are used in during loading or dynamically
during program execution to resolve external symbols.

Furthermore, dynamic libraries can be loaded either,

• during dynamic linking at the beginning of the execution, or

• dynamically during program execution using the linker (ld) API.

A good introduction about how the need for the various methods of composing ELF executables,
and the details of the linking and loading process is provided in [2].

BLAS is a numerical library, so it exports only functions. Even though the static libraries can
be generated for the Netlib distribution of BLAS, typically BLAS libraries are linked dynamically
as they are often used by many components of a program.

5.1 Linking with a dynamic BLAS library
To link a simple program with BLAS, first compile the program using the headers of BLAS. In
this case we need the C header, cblas.h, since we are using the C bindings provided by BLAS.

> /usr/bin/cc -isystem ${HOME}/.local/netlib/include \

-c example_execute.c \

-o example_execute.o

This command will compile the library. The tutorial library also uses a local utility library which
is compiled with the following command.

> /usr/bin/cc -o utils.o -c utils.c

The object file of the lilbrary is strung into a static library with the archive tool, ar, and a content
table is generated with the index generation tool, ranlib.

> /usr/bin/ar qc libutils.a utils.o && /usr/bin/ranlib libutils.a

Finally, the executable object file, the local utility library, and the BLAS libraries are linked to
create the final executable.

> /usr/bin/cc \

-Wl,--no-as-needed -Wl,-rpath,${HOME}/.local/netlib/lib \

example_execute.o \

${HOME}/.local/netlib/lib/libcblas.so \

${HOME}/.local/netlib/lib/libblas.so

libutils.a \

-o example_execute

The linking command is usually quite involved, especially in larger projects. In this case a
static library, libutils.a, and two dynami libraries from BLAS, libcblas.so and libblas.so,
are linked with the executable. The library libblas.so is linked because it is required by
libsblas.so. The dependencies are scanned from left to right, so an object must appear before
the objects it needs. Linux distributions provide various tools for inspecting libraries and
executables.

readelf: Displays information about ELF files. For instance the dynamic option, –dynamic or
-d, displays information about how the system will look for dynamic libraries during loading.

10



> readelf --dynamic example_execute

Tag Type Name/Value

0x0000000000000001 (NEEDED) Shared library: [libcblas.so.3]

0x0000000000000001 (NEEDED) Shared library: [libblas.so.3]

0x0000000000000001 (NEEDED) Shared library: [libc.so.6]

0x000000000000001d (RUNPATH) Library runpath: [/home/gkaf/.local/netlib/lib]

According to the listing, the libraries libcblas.so and libblas.so are needed, and the linker
will look into the directory /home/gkaf/.local/netlib/lib before looking into the standard
system locations.

ldd: Loads the executable libraries as loader would do during runtime.

> ldd example_execute

linux-vdso.so.1 (0x00007ffc6275a000)

libcblas.so.3 => /home/gkaf/.local/netlib/lib/libcblas.so.3 (0x00007f055a131000)

libblas.so.3 => /home/gkaf/.local/netlib/lib/libblas.so.3 (0x00007f055a08c000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f0559e8b000)

libgfortran.so.5 => /lib/x86_64-linux-gnu/libgfortran.so.5 (0x00007f0559a00000)

/lib64/ld-linux-x86-64.so.2 (0x00007f055a16e000)

libquadmath.so.0 => /lib/x86_64-linux-gnu/libquadmath.so.0 (0x00007f0559e44000)

libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f0559d63000)

libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f0559d43000)

5.2 Linking with ELF generated from other compilers
In general, ELF files generated from different compilers, such as gcc/gfortran, clang, and the
various Intel compilers, can be mixed provided that the ELF files have a compatible Application
Binary Interface (ABI) [3], [4]. The ABI determines details such as

• basic properties of the processor instruction set,

• size, layouts, and alignment of basic data types,

• the calling convention, which controls how arguments are passed and return to and from
functions, and

• how systems calls are made (i.e. memory allocation, file access, and so on).

In the case of BLAS, we could compile BLAS with gcc and our executable with clang and still
be able to link the two. More importantly, the ABI compatibility alows linking with the library
generated by gfortran for BLAS, as the library is written in FORTRAN. The Netlib library
provides an interface for convenience, but for other libraries require calling the FORTRAN
library directly. This is easier with language interoperability tools such the ISO C binding and
Chasm that provided various datatype definitions, so that users do not have to select themselves
data types which are compatible between languages.

6 Selecting a BLAS library
The Netlib reference implementation of BLAS, is as the name suggest, a generically optimized
version of the BLAS library which balances clarity with performance. There are implementations
that are targeted to specific hardware or implement more code optimizations in general to
achieve a better performance. Such implementations should be preferred over the reference
Netlib implementation when they are available5. Distributions that are worth trying are ATLAS
and the more modern OpenBLAS, both distributed under BSD style licenses.

5https://www.netlib.org/blas/#_optimized_blas_library
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